map – Sam & Max http://sametmax.com Du code, du cul Wed, 30 Oct 2019 15:34:04 +0000 en-US hourly 1 https://wordpress.org/?v=4.9.7 32490438 map(), filter() et reduce () ? http://sametmax.com/map-filter-et-reduce/ http://sametmax.com/map-filter-et-reduce/#comments Thu, 14 Nov 2013 09:44:58 +0000 http://sametmax.com/?p=7791 map(), filter() et reduce() sont des fonctions de traitement d'itérables typiques de la programmation fonctionnelle, qui ont été marquées comme à retirer des builtins pour Python 3. Finalement, seule reduce() sera déplacée dans le module functools pour Python 3.]]> map(), filter() et reduce() sont des fonctions de traitement d’itérables typiques de la programmation fonctionnelle, qui ont été marquées comme à retirer des builtins pour Python 3. Finalement, seule reduce() sera déplacée dans le module functools pour Python 3.

Les opérations que font ces fonctions sont typiquement quelque chose que l’ont peut faire sans elles, et nous allons les passer en revue pour voir dans quels cas elles sont pertinentes, dans quel cas une alternative est meilleure. L’alternative étant, dans 90% des cas, une liste en intention.

filter()

filter() prend une fonction en paramètre, souvent une lambda, comme ses deux soeurs puisqu’on est dans le paradigme fonctionnel. Elle doit renvoyer True si on garde un élément, et False sinon.

L’usage typique est celui-ci :

ages = range(30)
majeurs = filter(lambda x: x > 18, ages)
print(majeurs)
## [19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]

Typiquement, ce code peut être remplacé par une liste en intention dans le pur style Python :

majeurs = [a for a in ages if a > 18]

Le code est plus court, et fait usage d’une des fonctionalités les plus importantes du langage. On peut en plus ajouter une transformation à a facilement si on le désire, au lieu de devoir coller un map() derrière.

filter() est vraiment la moins utile des 3, et sera une question de style, surtout pour les nostalgiques de Lisp. Je répète souvent que quand on code avec un autre langage, on doit essayer de se tenir au style du nouveau et pas faire un mix avec ses anciennes habitudes. Quand je code en Java, je fais des getter et setter, même si j’ai horreur de ça.

Il existe quand même UNE astuce pour laquelle filter est utile : garder uniquement les éléments vrais d’une liste.

Typiquement :

l = [1, 0, None, [], True]
print filter(bool, l)
[1, True]

Ca marche si la fonction pre-existe et qu’on a pas à faire une lambda, mais c’est vraiment le seul usage potable. Un peu plus court qu’une liste en intention.

map()

Si filter() est l’équivalent de la partie de droite d’une liste en intention, map() est l’équivalent de la partie de gauche. La fonction passée retourne un résultat qui permet de transformer la liste.

Typiquement :

memes = ["It's over 9000 !", "All your base are belong to us."]
print(map(unicode.upper, memes))

Ce qui peut se traduire par :

print(s.upper() for s in memes)

map() est un peu plus utile, dans le sens où sa syntaxe peut être plus concise dans certains cas, comme le casting de types. Par exemple si je reçois une heure sous forme de string :

h, m, s = map(int, '8:19:22'.split(':'))

sera plus court et plus concis, et plus clair que :

h, m, s = (int(i) for i in '8:19:22'.split(':'))

Mais bon, la différence n’est pas non plus incroyable au point d’en faire une fonctionnalitéé clé. Je l’utilise de temps à autre par soucis de brièveté, mais vraiment c’est tout.

reduce()

reduce() est plus tordu. La fonction doit prendre deux paramètres en entrée, et retourner une valeur. Au premier appel, les deux premiers éléments de l’itérable sont passés en paramètres. Ensuite, le résultat de cet appel et l’élément suivant sont passés en paramètre, et ainsi de suite.

Vous n’avez rien pigé ? C’est normal. reduce() est parfaitement cryptique. Voici ce que ça donne en pratique :

def afficher(a, b):
    print("Entrée :", a, b)
    print("Sortie :", a + b)
    return a + b

res = reduce(afficher, range(10))
print("Résultat final", res)

## Entrée : 0 1
## Sortie : 1
## Entrée : 1 2
## Sortie : 3
## Entrée : 3 3
## Sortie : 6
## Entrée : 6 4
## Sortie : 10
## Entrée : 10 5
## Sortie : 15
## Entrée : 15 6
## Sortie : 21
## Entrée : 21 7
## Sortie : 28
## Entrée : 28 8
## Sortie : 36
## Entrée : 36 9
## Sortie : 45
## Résultat final 45

Vous allez me dire, à quoi ça sert ? Et bien par exemple à appliquer des opérateurs commutatifs, ici nous l’avons fait avec +, nous avons fait la somme de tous les éléments retournés par range(10). La preuve :

print(sum(range(10)))
## 45

Il n’y a pas, en Python, de fonction équivalent à sum() pour la multiplication. Donc on ferait :

print(reduce(lambda a, b: a * b, range(1, 11)))
## 3628800

Ce qui multiplie tous les éléments entre eux. Comme l’ordre dans lequel les éléments sont multipliés n’a pas d’important (d’où le ‘commutatif’), ça fonctionne.

reduce() peut prendre un troisième paramètre, initial, qui sera la valeur passée en premier au premier appel de la fonction. Cela permet de travailler sur des calculs en cascade qui ne fonctionneraient sinon pas. Revenons à notre exemple de temps :

temps = map(int, '8:19:22'.split(':'))
print(reduce(lambda a, b: a * 60 + b, temps, 0))
## 29962

Ce qui peut se traduire par :

h, m, s = map(int, '8:19:22'.split(':'))
print(h * 3600 + m * 60 + s)
## 29962

Bien sûr, cette conversion ne fonctionnerait pas si le calcul était sur un itérable plus long. Mais une version itérative est facile à faire :

res = 0
for i in map(int, '8:19:22'.split(':')):
    res = res * 60 + i
print(res)
## 29962

Maintenant, autant les deux dernières versions sont faciles à comprendre, autant la première prend quelques secondes. Et c’est la raison pour laquelle reduce() a été retirée des builtins, pour encourager l’usage des alternatives. En effet, cette fonction donne toujours un résultat très peu lisible. Je cite et approuve Guido là dessus:

C’est en fait celle que je déteste le plus, car, à part pour quelques exemples impliquant + ou *, presque chaque fois que je vois un appel à reduce() avec une fonction non-triviale passée en argument, j’ai besoin de prendre un crayon et un papier pour faire le diagramme de ce qui est effectivement entrée dans la fonction avant que je comprenne ce qu’est supposé faire reduce(). Donc à mes yeux, l’application de reduce() est plutôt limitée à des opérateurs associatifs, et dans d’autres cas il est mieux d’écrire une boucle d’accumulation explicitement.

Graissage maison.

Bref, reduce() est dur à lire, et une boucle ne l’est pas. Écrivez 3 lignes de plus, ça ne va pas vous tuer. Relire votre one-liner dans un mois par contre…

Cette fonction a été beaucoup utilisée avec les opérateurs or et and pour savoir si tous les éléments étaient vrais au moins un élément vrai dans une liste :

tout_est_vrai = [1, 1, 1, 1]
certains_sont_vrais = [1, 0, 1, 0]
tout_est_faux = [0, 0, 0, 0]

# Retourne True si tout est vrai
print(bool(reduce(lambda a, b: a and b, tout_est_vrai)))
## True
print(bool(reduce(lambda a, b: a and b, certains_sont_vrais)))
## False
print(bool(reduce(lambda a, b: a and b, tout_est_faux)))
## False
 
# Retourne True si au moins un élément est vrai
print(bool(reduce(lambda a, b: a or b, tout_est_vrai)))
## True
print(bool(reduce(lambda a, b: a or b, certains_sont_vrais)))
## True
print(bool(reduce(lambda a, b: a or b, tout_est_faux)))
## False

Mais aujourd’hui, c’est parfaitement inutile puisque nous avons les fonctions built-in all() et any(), qui font ça en plus court et plus rapide :

# Retourne True si tout est vrai
print(all(tout_est_vrai))
## True
print(all(certains_sont_vrais))
## False
print(all(tout_est_faux))
## False
 
# Retourne True si au moins un élément est vrai
print(any(tout_est_vrai))
## True
print(any(certains_sont_vrais))
## True
print(any(tout_est_faux))
## False

Petite astuce finale

Souvenez-vous également que les fonctions Python peuvent être déclarées n’importe où à la volée, même dans une autre fonction, une classe, une méthode, un context manager, etc. Or une fonction peut retourner un générateur grâce à yield, ce qui vous permet de déclarer des gros bouts de logique, et de les plugger dans votre process itérative a posteriori :

def traitement_complexe(iterable):
    for x in iterable:
        if x not in (1, 3, 7) and x % 2 != 0:
            if x + x < 13 :
                yield x
            else: 
                yield x - 2

print("-".join(map(str, traitement_complexe(range(20)))))
## 5-7-9-11-13-15-17
]]>
http://sametmax.com/map-filter-et-reduce/feed/ 22 7791
Les listes en intension VS map() en Python http://sametmax.com/les-listes-en-intentions-vs-map-en-python/ http://sametmax.com/les-listes-en-intentions-vs-map-en-python/#comments Thu, 04 Oct 2012 13:26:27 +0000 http://sametmax.com/?p=2452 map() et sont souvent plus à l'aise avec elle qu'avec les listes en intention en Python. Les deux font pourtant la même chose, tant et si bien que Python 3 voit map() retiré de ses built-in.]]> sLes adeptes de la programmation fonctionnelle connaissent bien le principe de la fonction map() et sont souvent plus à l’aise avec elle qu’avec les listes en intension en Python.

Les deux font pourtant la même chose, tant et si bien que Python 3 voit map() retiré de ses built-in. Ouuuups. Dérapage un-con-trollé de Sam.

C’est plutôt une nouvelle chose car dans un language orienté objet comme Python, il y a une subtile différence entre map() et les comprehension lists. Quand on utilise une méthode plutôt qu’une fonction, map() tue le duck tuping:

>>> l = [u'      Le choix dans la date     ', '     Les nouilles cuisent au jus de canne     ']
>>> map(str.strip, l)
Traceback (most recent call last):
  File "", line 1, in 
    map(str.strip, l)
TypeError: descriptor 'strip' requires a 'str' object but received a 'unicode'

>>> map(unicode.strip, l)
Traceback (most recent call last):
  File "", line 1, in 
    map(unicode.strip, l)
TypeError: descriptor 'strip' requires a 'unicode' object but received a 'str'

>>> [x.strip() for x in l]
[u'Le choix dans la date', 'Les nouilles cuisent au jus de canne']

Notez que je vous recomande d’éviter à tout prix de mélanger des chaînes encodées, et des chaînes unicode, de toute façon. J’utilise ceci uniquement parce que c’est un cas simple à comprendre.

Mais ici, le problème peut être résumé ainsi: nous avons une collection hétérogène d’objets (qui pourraient être de n’importe quels autres types, il y a des cas beaucoup plus légitimes), et nous appliquons la méthode de l’objet. Qui ne correspond pas forcément à son type.

Avoir des types différents avec la même interface est courant en Python pour profiter du duck typing, donc ce genre de chose n’est pas un edge case.

La solution est bien entendu de wrapper l’appel dans une fonction anonyme:

>>> map(lambda x: x.strip(), l)
[u'Le choix dans la date', 'Les nouilles cuisent au jus de canne']

Mais à ce stade, [x.strip() for x in l] est beaucoup plus lisible et rapide. Sans compter qu’il peut être transformé en générateur juste en changeant les [] en ().

]]>
http://sametmax.com/les-listes-en-intentions-vs-map-en-python/feed/ 4 2452